

FACT SHEET

PASSENGER: Applications in automotive headlamp **systems**

HTTPS://PASSENGER-PROJECT.EU

BUSINESS CASE: AUTOMOTIVE HEADLAMP SYSTEM

integrating PASSENGER permanent magnets

Executive Summary

Modern automotive headlamp systems rely on compact, precise actuator motors to enable adaptive beam control, height adjustment, and dynamic lighting functions. These electromechanical systems are essential for safety, comfort, and energy efficiency in both conventional and electric vehicles

Currently, most headlamp actuators use NdFeB-based permanent magnets to achieve the required torque and responsiveness within a small motor footprint. However, this dependence on Critical Raw Materials (CRMs) such as neodymium (Nd) and dysprosium (Dy) exposes manufacturers to price volatility and supply risk.

The PASSENGER project develops Rare Earth-free permanent magnets based on Manganese–Aluminium–Carbon (MnAlC) () and Strontium Ferrite (Sr-ferrite), offering sustainable, coststable, and EU-manufactured alternatives. This business case explores their integration in automotive headlamp actuators, assessing technical feasibility, economic potential, and environmental advantages.

Market need & challenge

Challenges and opportunities in automotive headlamp systems

Headlamp adjustment systems are integral to modern automotive design, particularly in LED and laser lighting technologies that require precise alignment. Actuators control functions such as beam height correction for variable loads, adaptive front-lighting and cornering systems, and dynamic range adjustment based on driving conditions.

The use of NdFeB (neodymium-iron-boron) magnets ensures compactness and high torque but presents several challenges:

High material cost due to volatile Rare Earth prices

Supply chain dependency on non-EU sources for Nd and Dy

Sustainability concerns related to mining and refining CRMs

Environmental footprint from energy-intensive magnet production

Developing Rare Earth-free alternatives aligns with Europe's industrial strategy, aiming to enhance self-sufficiency and reduce environmental impacts while maintaining performance standards in automotive components.

Market Size & Magnet Demand

Adaptive headlamp systems are increasingly integrated into electric and high-end vehicles, driven by safety regulations and smart mobility trends. Compact actuators enable functions such as beam height correction, cornering light adjustment, and adaptive driving beam (ADB) control — all relying on small permanent magnet motors.

M	larket segment	Size 2024	Size 2030	Compound annual growth 2024-2030
<u> </u>	Global Automotive Lighting	€29.8B	€42.4B	6.1%
A	Adaptive Headlamp Systems	€7.2B	€11.8B	8.5%
A	Global Automotive Lighting Actuators	\$27.6B	\$65.2B	8.1%
A	European Automotive Adaptive Lighting Systems	\$7.7B	\$14.8B	>14%

Sources: Fortune Business Insights, 2024, Markets and Markets 2024, Automotive Lighting Actuators Market Size, Growth Report 2035, Europe Automotive Adaptive Lighting System Market Size & Share Analysis, 2024

Modern vehicles equipped with adaptive lighting systems typically contain up to four actuators, with each actuator requiring 10–30 grams of permanent magnets. Across global automotive production, this creates an annual demand exceeding 2000 tonnes of permanent magnets.

This significant demand presents a large market opportunity for Rare Earth-free alternatives such as MnAIC and Sr-ferrite magnets to replace traditioe earth-based materials in automotive lighting applications.

PERMAMENT MAGNETS

10-30 grams per actuator

up to 4 actuators

per vehicle

GLOBAL DEMAND

>2000 tonnes /year

PASSENGER Business Potential

PASSENGER develops Rare Earth-free magnets compatible with small, high-precision actuators used in adaptive headlamp systems. These magnets are optimized for magnetic stability, manufacturability, and corrosion resistance in compact motor environments. Key advantages:

SUPPLY CHAIN AUTONOMY: 100% EU-based raw materials and processing

CORROSION RESISTANCE: improve resistance to humidity and condensation

масметис stability: provide precise, low-torque control applications

COMPACT INTEGRATION: enable actuator miniaturization without redesigning the motor assembly

PASSENGER'S MAGNET VALUE

MAGNET TYPE	COMPOSITION	KEY ADVANTAGES
MnAlC	Manganese- Aluminium-Carbon	Strong thermal and magnetic stability, suitable for miniaturized actuators
Sr-ferrite Strontium Ferrite		Cost-efficient, corrosion resistant, robust under varying ambient conditions

COST & SUPPLY CHAIN BENEFITS

PASSENGER's magnet portfolio offers a cost-stable and scalable alternative to NdFeB magnets, eliminating dependence on Critical Raw Materials (Nd, Dy), ensuring low supply risk and strengthening European industrial resilience.

NdFeB	MnAIC	Sr-ferrite Sr-ferrite	
€ 70-150/kg	€ 20/kg	€ 6/kg	
High, volatile cost CRM dependent	EU-sourced Cost stable	EU-sourced Cost stable	

REVENUE ESTIMATE (based on conservative EU market adoption scenarios)

MnAIC magnets

~€1.2.-1.6 million/year

Sr-FERRITE magnets

~€0.4-0.5 million/year

Sustainability

PASSENGER magnets in automotive systems help Europe achieve sustainability and industrial resilience by lowering reliance on imported CRMs and promoting circular, eco-friendly production.

LIFECYCLE SUSTAINABILITY BENEFITS OF PASSENGER MAGNETS

Green fabrication

Avoidance of harsh chemical processing of NdFeB magnets, reducing hazardous waste in manufacturing.

Sustainable lifecycle design

With a simplified composition, PASSENGER magnets enhance repair and sustainable remanufacture.

Climate friendly performance

Research indicates up to 80% lower CO₂ footprint with MnAIC magnets and up to 90% reduction with Sr-ferrite compared to conventional NdFeB.

CLOSED-LOOP ECONOMY IN AUTOMOTIVE UTILITIES

Headlamp systems offer distinct advantages with integrating advanced magnets:

PASSENGER magnets:

Support modular replacement of components without risk of contamination Enable safe and clean end-of-life disassembly

Allow future closed-loop recovery of magnets

STRATEGIC ALIGNMENT WITH EU PRIORITIES

PASSENGER supports the EU's long-term strategic goals by enabling safer, more resource-efficient production. Through CRM substitution and simplified material design, it helps manufacturers comply with emerging EU sustainability frameworks.

EU POLICY CONTEXT		PASSENGER MAGNETS
European Green Deal	\Rightarrow	Lower CO ₂ footprint in actuator production and support sustainable automotive supply chains
Critical Raw Materials (CRM) Strategy	\Rightarrow	Replace NdFeB magnets, reducing EU dependence on rare-earth imports and strengthening industrial sovereignty
Circular Economy Action Plan		Promote repair, reuse, recycling; extend material lifecycles
Sustainable Product Initiative		Support durable, repairable, and maintainable designs for automotive applications
Horizon Europe & EU Industrial Strategy	\Box	Promote innovation, advanced manufacturing, technological sovereignty by offering competitive magnet technologies for high-performance systems

The PASSENGER Advantage

PASSENGER magnets represent a viable, scalable and environmentally responsible European alternative to NdFeB in automotive headlamp actuator systems. By combining technical performance, cost stability, and supply chain independence, they support sustainable electrification and reinforce the competitiveness of Europe's automotive industry.

Engineered for **seamless integration** into existing systems, PASSENGER magnets enable easy industrial adoption while advancing the EU's objectives for **resilient**, **low-emission**, **and resource-efficient vehicle production**.

PASSENGER: applications in automotive headlamp systems

October 2025

DOI: 10.5281/zenodo.17458634

Authors: MNLT Innovations PC

Editing & design: European Science

Foundation, Maria Karatzia

Image credits: Generated by Canva

AI (cover)

More information

https://passenger-project.eu

- **X** @Passenger_EU
- /company/passenger-eu
- PassengerEU
- passenger_eu_project

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101003914